Securing good learning progress in design and technology from Key Stage 2 to Key Stage 3

Sandie Kendall & Martin Chandler

Transition

One teacher Primary classrooms Variable timed lessons Stay in one place I imited materials Integrated themes Familiar friends and teachers All belongings in one place Familiar places Small school Walk to school Old rules Oldest and biggest Lunch as always

Many teachers

Workshops and specialist rooms

Fixed timed lessons

Move all over the school

Range of materials textile food, metals, woods, plastics, card

Lack of cross curricular themes

New friends – new teachers

Carry stuff everywhere

Unfamiliar surroundings

Large buildings

Bus ride to school

New rules

Youngest and smallest

New lunch arrangements

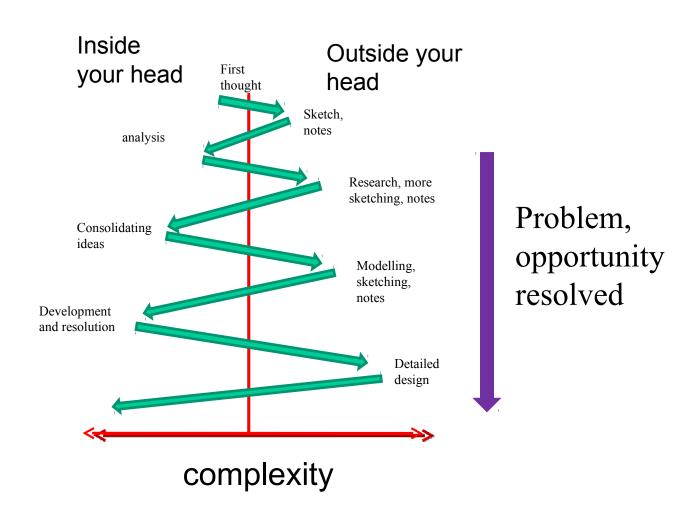
Where we are now – in primary schools

- NC2000 is the statutory order
- Many schools have moved away from QCA and are following a creative curriculum
- School initiated learning with a focus on local needs
- Less prescription
- Teachers deciding what to do

Implications

- progression and consistency
- Ensuring adequate coverage across range set out in NC 2000
- D&T activities linked to projects not always good D&T (lack of focus on user and purpose)
- Pupils' experience will vary widely from school to school

What is good practice?

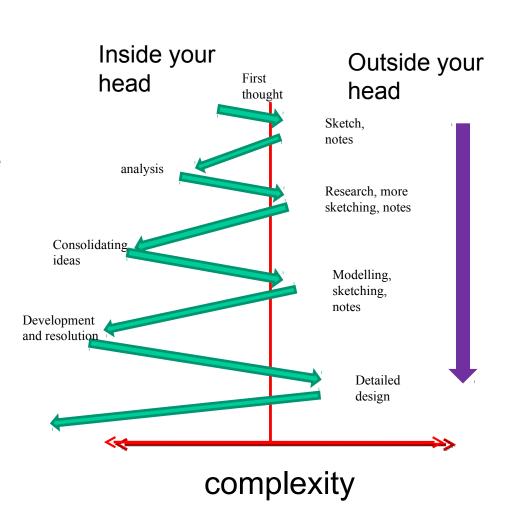

- A clear focus on
 - User
 - Purpose
 - Function
- Pupils being engaged in authentic d&t challenges where they make design decisions.
- Clear focus for activities based on learning intentions.

The reality

- No information about pupil's D&T experience or attainment is passed on
- Wide range of feeder primary schools
- Schools doing there own D&T activities

So how can you know where the pupils are in terms of D&T?

The Design Process

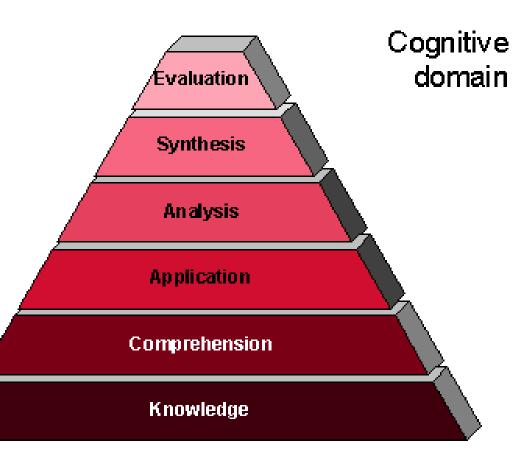


This is the only explanation that makes sense to me!

The transition pupil

The skills needed to complete the design and make process are bias in one direction, so it is difficult to reach resolution!

Frustration!


Base line Testing

 We have KS2 English, Maths and Science – so how does that help?

 Separate out the thinking skills and the making skills.

 Making is usually pretty low because they have not been taught very much!

 Thinking though will always outstrip the making

Base line Testing

- •First question knowledge and hand skills!
- •Draw a square 40mm x 40mm!
- Question on comprehension.
- Copy and enlarge a shape.
- •Sequencing make a cup of tea.
- Analysis of a product.
- Evaluation to improve a product.

What support is there?

- Quality through progression grids
- Moving forward posters
- D&T Association Primary Resources
- the Key stage 3 strategy ideas
- Bridging the Gap

How can we look at keeping progression?

- Focussing on the generic skills needed in designing
 - Generating ideas
 - Managing constraints
 - Adapting
 - Evaluation
 - Communicating skills (talking through ideas, drawing, annotation, 3D modelling, perspective, scale drawings, etc)

TRUCK PROJEC	T 2010 Today's I	Date: Please describ stages YOU v	1.7	
Your Name Distance achieved		through (in the arder) to designate your tr	the correct sign and (2)	
NOW EX	 PLAIN YOUR RESU	The following might do useful exercise:		
Did it work? Describe how well you truck performed as it rolled down the slope?		Drilling Cutting Measuring	ring (4)	
How well did your wheels turn? What stoned them down? Could		Marking Sawing	,	
you have improved this? What words could you use to describe the		What were the of the machin you used?		
mavement of your truck? (9355 nobb)?)			HEALTH & SAFETY	
Do you think having a smooth finish on your truck has helped it go further/faster?		Describe 3 thi about <u>safe</u> sas	hings andng?	
Compared to the other trucks, explain how well do YOU think yours did?		Describe 3 thi about <u>safe</u> dri		
Did your truck go straight? Explain what happened. Why did this happen?		Describe 3 this about <u>safe</u> san	anding?	
If you were to design & make this truck again, how would YOU make it better?		Why do you the health and satisfuportant who D&T projects	afety is then doing	

Focus Practical Tasks -

but with a bit of design thinking involved

The water carrier – can you carry four plastic cups of water with one sheet of A4 card?

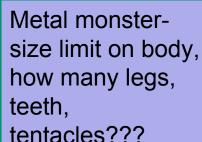
Learning the cutting and shaping in wood - pencil holder!!!!

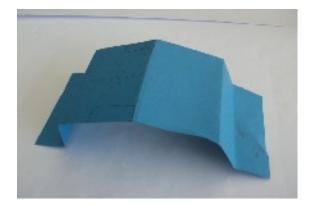
Set out a specification

- •must make four cuts,
- •must drill four holes,
- •Must hold 8 pencils.....

It does not have to be a great design exercise, but just let the pupil try out their own thoughts and then apply to making – What is the worse that can happen?

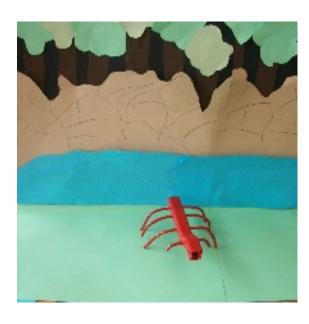
Similar for acrylic


The purse, pencil case....

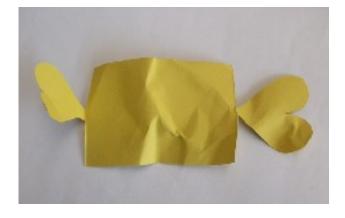

Decoration, size, fixtures......

The wooden truck

– size limit, how
many wheels?
Three cuts, drill
axle holes



Metal Monsters

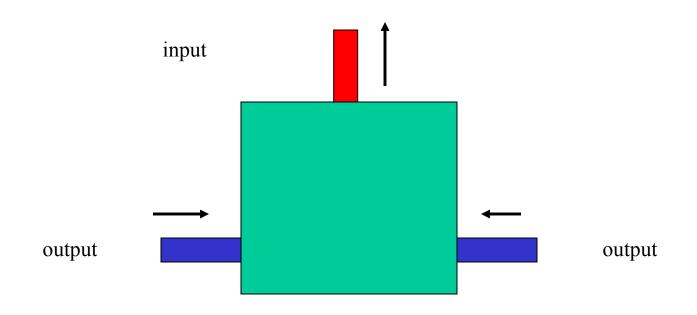


First attempt at using acrylic

Bridging the Gap

 Contains some useful materials to gauge pupils' previous experience

Can be done in school or as homework activities


 Provides information on pupils' knowledge & understanding of design and technology.

Assessment Activities

From Bridging the Gap

- What I have done already
- Glove Puppet
- Going on a 'joint walk'
- Electric circuits.

A practical activity to assess pupils knowledge

What can you assess?

- Knowledge and understanding of mechanisms
- Previous experience
- Technical vocabulary
- Pupils' ability to apply knowledge into other situations
- Construction capability